

Feb 19-8:47 AM

Some Review

Given $P(A)=.8, P(B)=.1$, find $P(A$ or $B)$ if

1) A and B are disjoint events. $\rightarrow P(A$ and $B)=0$

$$
\begin{aligned}
P(A \text { or } B) & =P(A)+P(B)-P(A \text { and } B) \\
& =.8+.1-0=.9
\end{aligned}
$$

2) A and B are independent events. $\rightarrow P(A$ and $B)=$
$P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

$$
=.8+.1-(.8)(.1)=.82
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Using Venn Diagram } \\
P(A \text { only OR } B \text { only })=.74 \\
P(\bar{A} \text { and } \bar{B})=P(\bar{A} \text { or } B
\end{array}=.18
\end{aligned}
$$

$P(\bar{A}$ or $\bar{B})=P(\bar{A} \operatorname{and} \bar{B})=92$ De Morgan's Law

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Nov 13-7:30 AM

$$
\begin{aligned}
& \begin{array}{c|cl}
\text { \# Correct } & P(\# \text { Correct }) & \text { clear all lists } \\
\hline 3 & .008 & \\
\hline 2 & .096 & \\
\hline 1 & .384 & P(\# \text { Correct } \rightarrow L 1 \\
\hline 0 & .512 & \text { use } L 1 \rightarrow L 2 \\
\hline
\end{array} \\
& \text { find } \\
& \bar{\chi}=.6 \quad S_{x}=\text { Blank } \quad n=1 \\
& \text { Domain } \\
& P(\text { at least one })=1-P(\text { None }) \\
& P(\text { at least } 1 \text { Correct Ans })=1-P\left(N_{0} \text { Correct Ans }\right) \\
& =1-P \text { (All incorrect) } \\
& =1-P(\bar{C} \bar{C} \bar{C}) \\
& =1-.512=.488
\end{aligned}
$$

$$
\begin{aligned}
& \text { Dependent Events } \\
& \begin{array}{c}
P(A \text { and } B)=P(A) \cdot P(B \mid A) \\
A \text { happens, then } \\
B \text { happens } \quad \text { Given }
\end{array} \\
& \text { There are } 10 \text { balls, } 4 \text { Red, and } 6 \text { Blue balls. } \\
& \text { Take } 2 \text { balls without Replacement } \\
& P(2 \text { Reds })=P(R R)=\frac{4}{10} \cdot \frac{3}{9}=\frac{12}{90}=\frac{2}{15} \\
& P(1 R, 1 B)=P(R B \text { or } B R)=2 \cdot \frac{4}{10} \cdot \frac{6}{9}=\frac{48}{90}=\frac{8}{15} \\
& P(\text { No Red })=P(B B)=\frac{6}{10} \cdot \frac{5}{9}=\frac{30}{90}=\frac{1}{3}
\end{aligned}
$$

Nov 13-7:49 AM

$$
\begin{array}{|l}
\hline \text { A standard deck of playing Cards has } 52 \text { Cards } \\
\text { and } 12 \text { are Face Cards. } \\
\text { Take two Cards } \\
F \rightarrow \text { without replacement. } \\
\bar{F} \rightarrow \text { Fare Card Fave Card } \\
\\
\hline
\end{array}
$$

Nov 13-8:21 AM

$$
\begin{aligned}
& \text { Conditional Probability } \\
& \text { we know } \\
& P(A \text { and } B)=P(A) \cdot P(B \mid A) \\
& \text { IS we Solve for } P(B \mid A) \text {, we get } \\
& P(B \mid A)=\frac{P(A \text { and } B)}{P(A)} \\
& \text { Suppose } P(A)=.8, P(B)=.5, P(A \text { and } B)=.45 \\
& P(B \mid A)=\frac{P(A \text { and } B)}{P(A)}=\frac{.45}{.8}=.563 \\
& P(A \mid B)=\frac{P(A \text { and } B)}{P(B)}=\frac{.45}{.5}=.9
\end{aligned}
$$

$$
\begin{aligned}
& P(\text { Coffee })=.8 \\
& P(\text { Donut })=.4 \\
& P(\text { coffee and Donut })=.3 \\
& P(\text { Donut | Coffee })=\frac{P(\text { coffee and Donut })}{P(\text { coffee })}=\frac{.3}{.8}=.375 \\
& P(\text { Coffee } \mid \text { Donut })=\frac{P(\text { coffee and Donut })}{P(\text { Donut })}=\frac{.3}{.4}=.75
\end{aligned}
$$

\qquad

Nov 13-8:58 AM

$$
\begin{aligned}
& \begin{array}{l}
P(\text { Math })=.4 \\
P(\text { English })=.6 \\
P(\text { Math } \mid \text { English })=.5
\end{array} \quad \rightarrow P(M \mid E)=\frac{P(\text { Many } E)}{P(E)} \\
& P(\text { Math and English })=? \quad P(\text { MandE })=(.5)(.6) \pm .3 \\
& P(\text { English } \mid \text { Math })=\frac{P(M \text { and } E)}{P(M)}=\frac{.3}{.4}=.75
\end{aligned}
$$

Nov 13-9:12 AM

\qquad
2) No repetition $\frac{10}{5040} \cdot \frac{8}{\text { chores }}$

How many ways can You Select a letter followed by 4 digits when letters are
Case Sensetive, and repetition allowed for digits? $52 \quad 10 \quad 10 \quad 10 \quad 10$ 52,000 choices
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$P($ I guess Your Passrode $)=\frac{1}{52000}$

There are 5 people，and we need to Select two．

 \(\begin{array}{cc}\substack{choose
 n^{+}
{ }^{C}
 r

 \& 10{ }^{+} choices
 c_{r}=\frac{n!}{r!(n-r)!}\end{array}\)
 object choose r ${ }_{5} C_{2}=\frac{5!}{2!\cdot(5-2)!}$ Order does not matter $=\frac{5 \cdot 4 \cdot 3 \cdot 2.1}{2 \cdot 1 \cdot 3 \cdot 2.1}=10$
 5 MATH \triangle PRB困 ocr 2 Enter}
\qquad

Nov 13－9：28 AM

12 basketball players． we need 5 to start the game． Order does not matter，All players can play any position．

How many ways can this be done？

$$
{ }_{12} C_{5}=792
$$

\qquad
\qquad
\qquad
12 basketball players．
we need 5 to start the game．
Order does not matter，All players can
play any Position．
How many ways can this be done？

$$
12^{2}=792
$$

> CA Lotto
> 50 Numbers, choose 5 numbers in any order.
> \# of ways $\rightarrow 50^{C} 5=2,118,760$
> $P($ all 5 winning\#s $)=\frac{1}{2,118,760}$

Nov 13-9:40 AM

> 3 Females غ. 7 Males
> Select 3 people, order does not matter.

